Microcote HPU Performance Plus (Adhesion Bond) Chemwatch Hazard Alert Code: 2 Issue Date: **13/04/2017**Print Date: **19/04/2017**L.GHS.AUS.EN # **Bio Surfaces Pty Ltd** Chemwatch: **5250-69** Version No: **2.1.1.1** Safety-Data Sheet according to WHS and ADG requirements # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ### **Product Identifier** | Product name | Microcote HPU Performance Plus (Adhesion Bond) | | |-------------------------------|---|--| | Synonyms | Adhesion promoter / curing agent | | | Proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains (3-glycidyloxypropyl)triethoxysilane) | | | Other means of identification | Not Available | | # Relevant identified uses of the substance or mixture and uses advised against | Relevant identified | Use according to manufacturer's directions. | |---------------------|---| | uses | Adhesion promoter / curing agent. | # Details of the supplier of the safety data sheet | Registered company name | Bio Surfaces Pty Ltd | |-------------------------|--| | Address | 21 Leakes Road Laverton North VIC 3026 Australia | | Telephone | 1300 768 468 | | Fax | Not Available | | Website | www.microcote.com.au | | Email | info@microcote.com.au | # **Emergency telephone number** | Association /
Organisation | Not Available | |-----------------------------------|---------------| | Emergency telephone numbers | Not Available | | Other emergency telephone numbers | Not Available | ### **SECTION 2 HAZARDS IDENTIFICATION** ### Classification of the substance or mixture HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. # CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|--------------------------| | Flammability | 1 | | | | Toxicity | 2 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low | | Reactivity | 2 | | 2 = Moderate
3 = High | | Chronic | 0 | | 4 = Extreme | | Poisons Schedule | Not Applicable | |-------------------------------|---| | Classification ^[1] | Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | Version No: **2.1.1.1** # Microcote HPU Performance Plus (Adhesion Bond) # Issue Date: **13/04/2017** Print Date: **19/04/2017** ### Label elements GHS label elements SIGNAL WORD WARNING ### **Hazard statement(s)** | H332 | Harmful if inhaled. | |--------|-----------------------------------| | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H335 | May cause respiratory irritation. | | H400 | Very toxic to aquatic life. | | AUH019 | May form explosive peroxides | # Precautionary statement(s) Prevention | P271 | Use in a well-ventilated area. | | |------|--|--| | P261 | Avoid breathing mist/vapours/spray. | | | P273 | Avoid release to the environment. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | # Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | |----------------|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | P391 | Collect spillage. | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | # Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|--|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. ### SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS # **Substances** See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | |-----------|-----------|--------------------------------------| | 2602-34-8 | >60 | (3-glycidyloxypropyl)triethoxysilane | | | | hydrolysis yields | | 64-17-5 | | ethanol | # **SECTION 4 FIRST AID MEASURES** # **Description of first aid measures** Chemwatch: 5250-69 Page 3 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 Print Date: 19/04/2017 ### Microcote HPU Performance Plus (Adhesion Bond) | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | # Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. Treat symptomatically. # **SECTION 5 FIREFIGHTING MEASURES** ### **Extinguishing media** - ▶ Foam. - ▶ Dry chemical powder. - ▶ BCF (where regulations permit). - ► Carbon dioxide. - Water spray or fog Large fires only. ### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | Advice for firefighters | | | | |-------------------------|---|--|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | | Fire/Explosion Hazard | ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause
expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: , | | | Chemwatch: **5250-69**Version No: **2.1.1.1** Page 4 of 13 Microcote HPU Performance Plus (Adhesion Bond) Issue Date: 13/04/2017 Print Date: 19/04/2017 **HAZCHEM** •3Z # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up | Methods and material | Tor containment and cleaning up | |----------------------|---| | Minor Spills | Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. | | Major Spills | Environmental hazard - contain spillage. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 HANDLING AND STORAGE** # Precautions for safe handling | Safe handling | DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. | |-------------------|--| | Other information | Consider storage under inert gas. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. | • Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities ### Suitable container ▶ Metal can or drum ▶ Packaging as recommended by manufacturer. Chemwatch: 5250-69 Page 5 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 Print Date: 19/04/2017 ### Microcote HPU Performance Plus (Adhesion Bond) ► Check all containers are clearly labelled and free from leaks. ► Segregate from alcohol, water. Glycidyl ethers: ▶ may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals - inhibitor should be maintained at adequate levels • may polymerise in contact with heat, organic and inorganic free radical producing initiators Storage incompatibility ▶ may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine ▶ attack some forms of plastics, coatings, and rubber Avoid reaction with oxidising agents ### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION ### **Control parameters** ### OCCUPATIONAL EXPOSURE LIMITS (OEL) ### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|------------|---------------|-----------------------|---------------|---------------|---------------| | Australia Exposure
Standards | ethanol | Ethyl alcohol | 1880 mg/m3 / 1000 ppm | Not Available | Not Available | Not Available | ### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |------------|--------------------------|---------------|---------------|-----------| | ethanol | Ethyl alcohol; (Ethanol) | Not Available | Not Available | 15000 ppm | | Ingredient | Original IDLH | Revised IDLH | |--------------------------------------|---------------|-----------------| | (3-glycidyloxypropyl)triethoxysilane | Not Available | Not Available | | ethanol | 15,000 ppm | 3,300 [LEL] ppm | ### MATERIAL DATA Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can: - ▶ cause inflammation - · cause increased susceptibility to other irritants and infectious agents - ▶ lead to permanent injury or dysfunction - permit greater absorption of hazardous substances and - acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure. ### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use ### **Appropriate** engineering controls Employers may need to use multiple types of controls to
prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively Chemwatch: 5250-69 Page 6 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 ### Microcote HPU Performance Plus (Adhesion Bond) Print Date: 19/04/2017 remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection - ▶ Safety glasses with side shields. - Chemical goggles. - ► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] ### Skin protection Eye and face protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber ### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. # Hands/feet protection Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Chemwatch: 5250-69 Page 7 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 Print Date: 19/04/2017 ### Microcote HPU Performance Plus (Adhesion Bond) Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. See Other protection below **Body protection** Overalls. ▶ P.V.C. apron. Other protection Barrier cream. Skin cleansing cream. ▶ Eye wash unit. ### Respiratory protection Thermal hazards Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class1 | - | | up to 50 | 1000 | - | A-AUS / Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | | Airline** | ^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand Not Available A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. # **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** Information on basic physical and chemical properties # **Appearance** Colourless liquid with a characteristic odour; partially
miscible with water. | Physical state | liquid | Relative density
(Water = 1) | 1 | |------------------|----------------|---|---------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 230 | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | Chemwatch: **5250-69** Page 8 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 Print Date: 19/04/2017 # Microcote HPU Performance Plus (Adhesion Bond) | Melting point / freezing point (°C) | <-70 | Viscosity (cSt) | Not Available | |--|-----------------|-------------------------------------|----------------| | Initial boiling point and boiling range (°C) | 270 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | 119 PMC | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension
(dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component
(%vol) | Not Available | | Vapour pressure (kPa) | Negligible | Gas group | Not Available | | Solubility in water (g/L) | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | 1000 ca. | # **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |--|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of
hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous
decomposition
products | See section 5 | # **SECTION 11 TOXICOLOGICAL INFORMATION** # Information on toxicological effects | Information on toxico | logical effects | |-----------------------|--| | Inhaled | Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. | | Ingestion | Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). The material is not thought to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum. | | Skin Contact | Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | Chemwatch: 5250-69 Page 9 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 ### Microcote HPU Performance Plus (Adhesion Bond) Print Date: 19/04/2017 ### Eve Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eve(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. ### Chronic Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as
foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1). (1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996 | Microcote HPU Performance | TOXICITY | IRRITATION | |--------------------------------------|--|-----------------------------------| | Plus (Adhesion Bond) | Not Available | Not Available | | | TOXICITY | IRRITATION | | (3-glycidyloxypropyl)triethoxysilane | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | ethanol | Inhalation (rat) LC50: 64000 ppm/4hr ^[2] | Eye (rabbit):100mg/24hr-moderate | | | Oral (rat) LD50: >1187-2769 mg/kg ^[1] | Skin (rabbit):20 mg/24hr-moderate | | | | Skin (rabbit):400 mg (open)-mild | | Lawren de Malua akto | sized from Europe EOUA Designatored Cubetaness Assured | | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances ### (3-GLYCIDYLOXYPROPYL)TRIETHOXYSILANE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS, RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial Chemwatch: 5250-69 Page 10 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 ### Microcote HPU Performance Plus (Adhesion Bond) Print Date: 19/04/2017 bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. ### For alkoxysilanes: Low molecular weight alkoxysilanes (including alkyl orthosilicates) are a known concern for lung toxicity, due to inhalation of vapours or aerosols causing irreversible lung damage at low doses. Alkoxysilane groups that rapidly hydrolyse when in contact with water, result in metabolites that may only cause mild skin irritation. Although there appears to be signs of irritation under different test conditions, based on the available information, the alkoxysilanes cannot be readily classified as a skin irritant. The trimethoxysilane group of chemicals have previously been associated with occupational eye irritation in exposed workers who experienced severe inflammation of the cornea . Based on the collective information, these substances are likely to be severe irritants to the eyes. Methoxysilanes are generally reported to possess higher reactivity and toxicity compared to ethoxysilanes; some methoxysilanes appear to be carcinogenic .In the US, alkoxysilanes with alkoxy groups greater than C2 are classified as moderate concern. Based on available information on methoxysilanes, the possibility that this family causes skin sensitisation cannot be ruled out. Amine-functional methoxysilanes have previously been implicated as a cause of occupational contact dermatitis, often as a result of repeated skin exposure with workers involved in the manufacture or use of the resins containing the chemical during fibreglass production. * Sigma Aldrich SDS ** Geleste SDS ### **ETHANOL** The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | ✓ | Carcinogenicity | 0 | |-----------------------------------|----------|-----------------------------|----------| | Skin
Irritation/Corrosion | ~ | Reproductivity | 0 | | Serious Eye
Damage/Irritation | ~ | STOT - Single
Exposure | ✓ | | Respiratory or Skin sensitisation | 0 | STOT - Repeated
Exposure | 0 | | Mutagenicity | 0 | Aspiration Hazard | 0 | Legend: ★ – Data available but does not fill the criteria for classification Data available to make classification ### **SECTION 12 ECOLOGICAL INFORMATION** ### **Toxicity** | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |--------------------------------------|---|--------------------|-------------------------------|---------------|--------| | (3-glycidyloxypropyl)triethoxysilane | LC50 | 96 | Fish | >71mg/L | 2 | | (3-glycidyloxypropyl)triethoxysilane | EC50 | 48 | Crustacea | >59mg/L | 2 | | (3-glycidyloxypropyl)triethoxysilane | EC50 | 96 | Algae or other aquatic plants | <1.000mg/L | 3 | | (3-glycidyloxypropyl)triethoxysilane | EC50 | 96 | Crustacea | >=40mg/L | 2 | | (3-glycidyloxypropyl)triethoxysilane | NOEC | 72 | Algae or other aquatic plants | >=53mg/L | 2 | | ethanol | LC50 | 96 | Fish | 42mg/L | 4 | | ethanol | EC50 | 48 | Crustacea | 2mg/L | 4 | | ethanol | EC50 | 96 | Algae or other aquatic plants | 17.921mg/L | 4 | | ethanol | EC50 | 24 | Algae or other aquatic plants | 0.0129024mg/L | 4 | | ethanol | NOEC | 2016 | Fish | 0.000375mg/L | 4 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. | | | | | METI (Japan) - Bioconcentration Data 8. Vendor Data Very toxic to aquatic organisms. Continued... Chemwatch: 5250-69 Page 11 of 13 Issue Date: 13/04/2017 Version No: 2.1.1.1 ### Microcote HPU Performance Plus (Adhesion Bond) Print Date: 19/04/2017 Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Alkoxysilanes are highly toxic to algae and moderately toxic to aquatic invertebrates. e.g. the daphnid 48 hour LC50 for dimethyldiethoxysilane is 1.25 mg/l, and the 15-day algal EC50 for a number of alkoxysilanes is approximately 10 mg/l. Alkoxysilanes are used as coupling agents and are designed to Hydrolysis generally produces biodegradable alcohols. Parameters controlling intrinsic stability and reactivity of organosilanols generated from alkoxysilanes in aqueous environments have been elucidated in several experiments. The studies indicate that the rates of hydrolysis of alkoxysilanes are generally related to their steric bulk, but demonstrate that after rate-limiting hydrolysis of the first alkoxy group steric effects are much less important. ### DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | | |--------------------------------------|-----------------------------|-----------------------------|--| | (3-glycidyloxypropyl)triethoxysilane | HIGH | HIGH | | | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | ### Bioaccumulative potential | Ingredient | Bioaccumulation | |--------------------------------------|-----------------------| | (3-glycidyloxypropyl)triethoxysilane | LOW (LogKOW = 0.5581) | | ethanol | LOW (LogKOW = -0.31) | ### Mobility in soil | Ingredient | Mobility | |--------------------------------------|-----------------| | (3-glycidyloxypropyl)triethoxysilane | LOW (KOC = 566) | | ethanol | HIGH (KOC = 1) | ### **SECTION 13 DISPOSAL CONSIDERATIONS** ### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ► Reuse - ▶ Recycling - ► Disposal (if all else fails) ### **Product / Packaging** disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may
change in use, and recycling or reuse may not always be appropriate. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. ### **SECTION 14 TRANSPORT INFORMATION** ### Labels Required Page 12 of 13 Version No: 2.1.1.1 Microcote HPU Performance Plus (Adhesion Bond) Issue Date: 13/04/2017 Print Date: 19/04/2017 **HAZCHEM** •3Z # Land transport (ADG) | UN number | 3082 | | | |------------------------------|--|--|--| | UN proper shipping name | NVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains (3-glycidyloxypropyl)triethoxysilane) | | | | Transport hazard class(es) | Class 9 Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 274 331 335 375 AU01 Limited quantity 5 L | | | Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in; - (a) packagings; - (b) IBCs; or - (c) any other receptacle not exceeding 500 kg(L). - Australian Special Provisions (SP AU01) ADG Code 7th Ed. # Air transport (ICAO-IATA / DGR) | UN number | 3082 | | | | |---------------------------------|---|--|-------------------------------|--| | UN proper shipping name | Environmentally hazardous substance, liquid, n.o.s. * (contains (3-glycidyloxypropyl)triethoxysilane) | | | | | Transport hazard
class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 9 Not Applicable 9L | | | | Packing group | III | III | | | | Environmental hazard | Not Applicable | | | | | | Special provisions | | A97 A158 A197 | | | | Cargo Only Packing Instructions | | 964 | | | | Cargo Only Maximum Qty / Pack | | 450 L | | | • | Passenger and Cargo Packing Instructions | | 964 | | | Special precautions
for user | Passenger and Cargo Maximum Qty / Pack | | 450 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y964 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 30 kg G | | | | Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo | Qty / Pack Packing Instructions Maximum Qty / Pack Limited Quantity Packing Instructions | 450 L
964
450 L
Y964 | | # Sea transport (IMDG-Code / GGVSee) | UN number | 3082 | | | |---------------------------------|---|--|--| | UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains (3-glycidyloxypropyl)triethoxysilane) | | | | Transport hazard class(es) | IMDG Class 9 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions
for user | EMS Number F-A, S-F Special provisions 274 335 969 Limited Quantities 5 L | | | Chemwatch: **5250-69** Page **13** of **13** Version No: 2.1.1.1 Microcote HPU Performance Plus (Adhesion Bond) Issue Date: **13/04/2017**Print Date: **19/04/2017** Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 REGULATORY INFORMATION** ### Safety, health and environmental regulations / legislation specific for the substance or mixture ### (3-GLYCIDYLOXYPROPYL)TRIETHOXYSILANE(2602-34-8) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) # ETHANOL(64-17-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) Australia Hazardous Substances Information System - Consolidated Lists | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Y | | Canada - DSL | N ((3-glycidyloxypropyl)triethoxysilane) | | Canada - NDSL | N (ethanol) | | China - IECSC | Y | | Europe - EINEC /
ELINCS / NLP | Y | | Japan - ENCS | Y | | Korea - KECI | Y | | New Zealand - NZIoC | Y | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 OTHER INFORMATION** ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$ PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit, IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.